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Assessment of Linkage Disequilibrium by the Decay of Haplotype Sharing,
with Application to Fine-Scale Genetic Mapping
Mary Sara McPeek and Andrew Strahs
Department of Statistics, University of Chicago, Chicago

Summary

Linkage disequilibrium (LD) is of great interest for gene
mapping and the study of population history. We pro-
pose a multilocus model for LD, based on the decay of
haplotype sharing (DHS). The DHS model is most ap-
propriate when the LD in which one is interested is due
to the introduction of a variant on an ancestral haplo-
type, with recombinations in succeeding generations re-
sulting in preservation of only a small region of the an-
cestral haplotype around the variant. This is generally
the scenario of interest for gene mapping by LD. The
DHS parameter is a measure of LD that can be inter-
preted as the expected genetic distance to which the an-
cestral haplotype is preserved, or, equivalently, 1/(time
in generations to the ancestral haplotype). The method
allows for multiple origins of alleles and for mutations,
and it takes into account missing observations and am-
biguities in haplotype determination, via a hidden Mar-
kov model. Whereas most commonly used measures of
LD apply to pairs of loci, the DHS measure is designed
for application to the densely mapped haplotype data
that are increasingly available. The DHS method ex-
plicitly models the dependence among multiple tightly
linked loci on a chromosome. When the assumptions
about population structure are sufficiently tractable, the
estimate of LD is obtained by maximum likelihood. For
more-complicated models of population history, we find
means and covariances based on the model and solve a
quasi-score estimating equation. Simulations show that
this approach works extremely well both for estimation
of LD and for fine mapping. We apply the DHS method
to published data sets for cystic fibrosis and progressive
myoclonus epilepsy.
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Introduction

Gametic association or linkage disequilibrium (LD) is
potentially useful for fine-scale genetic mapping as well
as for the study of population history and dynamics.
Rather than consider all types of LD, we focus attention
on LD that is due primarily to the introduction of a
variant on an ancestral haplotype that is then partially
preserved in descendants. (We do allow for some pro-
portion of the variant-containing haplotypes to be un-
related to the others.) We consider two distinct
problems.

Problem 1: Assessment of the Magnitude of LD
around a Variant

Suppose that a sample of haplotypes sharing a specific
genetic variant are collected from a given population.
Assuming that the haplotypes provide considerable
marker information quite close to the variant, how can
we quantify the degree of LD around the variant in the
population? In principle, we view this problem as equiv-
alent to estimation of the age of the variant, although
in practice it should usually be regarded as equivalent
to estimation of the time to the most recent common
ancestor of the variant in the sample. (This distinction
is discussed in detail by Rannala and Slatkin [1998].) In
this problem, we assume that the genetic locations of
the variant and of the markers are known. We also re-
quire additional information such as either a sample of
control haplotypes from the same population or marker-
allele frequencies for the population.

Problem 2: Fine-Scale Genetic Mapping by LD

Now suppose that a sample of haplotypes likely to
have a specific genetic variant are collected from a given
population but that this time the location of the variant
is unknown and the goal is to estimate the location. We
presume that strong linkage between the variant and a
chromosomal region has been established and that the
haplotype data consist of a considerable amount of
marker information in a small region tightly linked to
the variant. As above, we assume that the locations of
the markers are known and that information on fre-
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quencies of haplotypes or alleles in an appropriate con-
trol population are available.

In both problems, we seek to use information on LD
from multiple markers simultaneously, but most of the
commonly used measures of LD are applicable only to
pairs of loci, many only to biallelic loci. We note that
to consider only pairwise information on LD among loci
when extensive multilocus haplotypes are available is a
tremendous waste of valuable information. Suppose that
allele A at locus 1 and allele B at locus 2 seem to appear
together on haplotypes disproportionately often. Cer-
tainly the presence or absence of shared alleles at several
polymorphic loci between A and B on the A-B haplo-
types would provide much additional evidence about the
strength and nature of the association. Bennett (1954)
and Slatkin (1972) have each given formulations of LD
that are based on multiple biallelic markers, essentially
looking at interactions of every order among the loci.
For more than a handful of loci, the higher-order inter-
actions become numerous and exceedingly complicated.
These approaches are not tailored to the particular sit-
uation of inheritance by descent of ancestral haplotypes
and do not provide a summary of LD in a form that
would be useful for solving either of the problems men-
tioned above.

Likelihood approaches to problems 1 and 2, using
pairs of loci and taking into account population struc-
ture, have been described by Kaplan et al. (1995), Gra-
ham and Thompson (1998), and Rannala and Slatkin
(1998). Graham and Thompson (1998) also extend their
implementation to interval mapping. Several methods
for multipoint LD mapping have been proposed. The
multipoint method of Terwilliger (1995) and the mul-
tipoint method of Xiong and Guo (1997), using their
first-order approximation, are based on combination of
single-point likelihoods. They take into account neither
the dependence across loci within a haplotype nor the
dependence across haplotypes that is due to population
structure. Devlin et al. (1996) model dependence due to
population structure, using a gamma model validated
by simulations, although they do not model the depen-
dence across markers within a haplotype. Lazzeroni
(1998) develops a method for biallelic markers, in which
transformed pairwise disequilibrium measures are com-
bined across loci, by application of nonlinear regression.
Rather than model dependence across markers within a
haplotype and dependence due to population structure,
Lazzeroni (1998) uses a bootstrap estimate of the co-
variance matrix, which can take into account covariance
conditional on the realized population, although not un-
conditional covariance across possible realizations of the
population.

For fine-scale mapping, the dependence across loci
within an individual haplotype is expected to be ex-
tremely high. Therefore, we take the approach of mod-

eling it explicitly. To take into account population struc-
ture, we use covariances calculated under a population
model and apply a quasi-likelihood approach. The pop-
ulation model that we use is a variation on the coalescent
model of Kingman (1982), in which we condition on
the time to the most recent common ancestor.

Methods

We argue that in many contexts it is useful and natural
to think of LD as occurring around a particular variant
in a population, rather than as a function of a pair of
loci. Thus, we propose to assess the distribution of the
extent of a region of shared haplotype around a variant.
We model the rate at which the number of individuals
still sharing a haplotype decreases with increasing
distance.

We begin by describing in detail the likelihood for a
single observed haplotype under our model. Then we
show how to form the joint likelihood or quasi-score
function for all of the observations, depending on the
assumed model for the descent relationships among the
individual haplotypes. Initially we assume that the lo-
cation of the variant is known. When the location of
the variant is unknown, we consider location as a
parameter and maximize the likelihood (or quasi-like-
lihood) over location, simultaneously with the other pa-
rameters. This is done by maximization of the fixed-
location likelihood for each possible location of the var-
iant within a fine grid, with the maximum-likelihood
estimate taken to be the location, along with the cor-
responding maximizing parameters, for which the max-
imized likelihood is largest. Thus, all development of the
likelihood for the location-known problem is immedi-
ately applicable to the location-unknown problem.

First consider the dense-marker case, for simplicity.
Suppose that we observe a single haplotype that is a tth-
generation descendant of a given ancestor and that in-
herits from this ancestor a particular variant at locus 0.
If we assume that there is no selection at any loci other
than locus 0 and that there is no interference, then the
distances (in Morgans) from locus 0 to the right and left
breakpoints of the ancestral segment in the descendant
are distributed as independent exponential random var-
iables with rate t (see Appendix A). With interference,
this result is approximate for small genetic distance and
large t. (In Appendix A, we show how interference can
be incorporated into the model.) Then, the length (in
Morgans) of the inherited ancestral segment has the dis-
tribution of a gamma(2,t) random variable. The ex-
pected length of the ancestral segment is 2/t Morgans,
and the expected genetic distance from the variant to
either edge of the ancestral segment is t�1 Morgans. A
larger value of t�1 corresponds to a larger inherited an-
cestral segment (i.e., higher LD), whereas cor-�1t = 0
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responds to no LD. To solve problem 1 (i.e., to assess
the magnitude of LD around a variant), we take t�1 as
a measure of the LD around the variant and proceed to
estimate it from multilocus haplotype data.

Note that when the ancestral haplotype is known, t

is the age of the variant. Aside from the fact that t�1 is
a more natural measure of LD than is t, we prefer to
estimate t�1 rather than t because, in small samples, the
sampling distribution is closer to normality, so the con-
fidence intervals (CIs) based on the Fisher information
and the normal approximation have closer to the true
coverage for t�1 than for t (results not shown). To obtain
an estimate and CI for t, we simply invert the estimate
and confidence bounds for t�1.

The idea behind our approach to problem 2, fine-scale
genetic mapping by LD, is the same principle that is used
in multipoint linkage mapping; that is, a likelihood is
specified that describes a particular pattern of localized
excess sharing that would be observed among those
sharing a variant by descent. The likelihood typically
has one or more parameters that specify the degree of
excess sharing at the given location. The likelihood is
maximized over these parameters at each location, and
the location with the largest maximized likelihood is
selected. (In multipoint linkage analysis and in the LD
mapping method that we describe, the null likelihood is
the same at every location.) For instance, in parametric
linkage analysis, parameters of the genetic model for the
trait may be maximized over at each point. In the semi-
parametric linkage analysis described by Whittemore
(1996) and Kong and Cox (1997), the parameter d spec-
ifying the degree of excess sharing is maximized over at
each point. The analogous parameter in our formulation
of the LD mapping problem is t�1. Thus, we maximize
the likelihood over t�1 at each location in the fine-map-
ping region, to determine the location whose maximized
likelihood is largest. Intuitively, a large maximized like-
lihood at a particular location indicates a deviation, from
null sharing, that is well explained by exponential decay
of a shared haplotype centered around the given
location.

Suppose that we can make observations only at
marker loci, which are assumed to be very closely
spaced. At this point, we still assume that we have perfect
information about identity by descent from the ancestral
haplotype at each marker; this assumption will be dis-
carded later. As before, suppose that the inherited variant
is at locus 0, with loci 1,2,3,) at increasing distance to
one side and with loci �1,�2,�3,) at increasing dis-
tance to the other side. Let xi be the signed genetic dis-
tance (in Morgans) of locus i from locus 0, and let

for . Suppose that the tth-generation de-d = x � x j ! ij,i i j

scendant haplotype, call it “ ,” inherits the varianthobs

and the ancestral block, intact, between loci �k and j
inclusive but that it is no longer intact at locus

nor at locus . Then, letting be�1�k � 1 j � 1 L(t ; h )obs

the likelihood of the observed haplotype and letting the
function g represent the portion of the likelihood in-
volving t�1, we have

�1 �1L(t ; h ) ∝ g(t ,�k,j)obs

�td �td �td�k,j �k�1,�k j,j�1= e (1 � e )(1 � e ) . (1)

Here, the first factor represents the probability that there
are no crossovers between loci �k and j during t gen-
erations, the second factor represents the probability that
there is at least one crossover between loci �k and
� during t generations, and the last factor repre-k � 1
sents the probability that there is at least one crossover
between loci j and during t generations. If locus jj � 1
were to represent the edge of the observed haplotype,
then the term would not appear, and a sim-�tdj,j�1(1 � e )
ilar situation would obtain for locus �k. We assume
that adjacent markers are close enough that unobserved
double recombinants would be too rare to be of any
consequence in the analysis.

For a single tth-generation descendant haplotype, con-
sider the function R of chromosomal location x (ex-
pressed as signed distance from the variant), which as-
signs the value (“ancestral”) to all locations xR(x) = A
in the largest intact ancestral block surrounding the var-
iant and which assigns value (“nonancestral”)R(x) = N
to all other locations. Then, on the basis of formula (1),
it can be seen that R(x) is equivalent to a pair of con-
tinuous-time Markov chains indexed by position, both
starting at the variant but going in opposite directions,
with ,P{R(x � t) = AFR(x) = A} = exp (�tFtF) P{R(x �

, andt) = NFR(x) = A} = 1 � exp (�tFtF) P{R(x � t) =
, for x and t either both 10 or both !0.NFR(x) = N} = 1

With incomplete data—that is, when (a) the markers
provide information only on identity by state, rather
than identity by descent, with the ancestral haplotype,
(b) some marker information is missing, (c) mutations
are allowed, and (d) genotype data provide only partial
information on haplotypes—we will make use of this
Markov-chain formulation to create a hidden Markov
model, which allows for maximization of the likelihood
by the Baum/expectation-maximization (EM) algorithm
(Baum 1972; Dempster et al. 1977).

Estimation of the Ancestral Haplotype

In practice, the ancestral haplotype is not known, and
we estimate it from the data by maximum likelihood.
To do this, we must include in the likelihood a com-
ponent giving the probability that particular alleles will
be observed, given that they are nonancestral; that is, in
place of formula (1), the likelihood of a single observed
haplotype can be written
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�1 �1L(h ,t ; h ) = g(t ,�k,j)anc obs

#P [h (j � 1),h (j � 2),...]null obs obs

#P [h (�k � 1),h (�k � 2),...] , (2)null obs obs

where , the ancestral haplotype, is now a parameterhanc

in the likelihood and , the haplotype of the observedhobs

tth-generation descendant, is a data point. g(t�1, �k,j)
is given in formula (1), represents the allele ath (i)obs

locus i in the haplotype ,h P [h (j � 1),h (j �obs null obs obs

is the joint probability that the alleles2),...] h (j �obs

occur in a nonancestral haplotype, and1),h (j � 2),...obs

is defined similarly. TheP [h (�k � 1),h (�k � 2),...]null obs obs

form of this probability depends on the information that
is available on control haplotypes. If only the allele fre-
quencies from control haplotypes are available, as in the
published EPM1 data set of Virtaneva et al. (1996), then

could be taken to be theP [h (j � 1),h (j � 2),...]null obs obs

product of the allele frequencies for the observed al-
leles—that is, , where is the fre-P f[h (l)] f[h (l)]l�j�1 obs obs

quency of allele in an appropriate control popu-h (l)obs

lation. If control haplotypes are available, as in the
published cystic fibrosis (CF) data set of Kerem et al.
(1989), then a model such as a kth-order Markov-chain
model could be used to obtain P [h (j � 1),h (j �null obs obs

. In practice, there will typically not be enough2),...]
information to warrant the use of a Markov chain of
order 11. In this case, instead of multiplying the fre-
quencies of the marker alleles, we multiply their one-
step conditional frequencies, f[hobs( )Fhobs(l) no.l � 1 ] = [
of occurrences of the pair (hobs( ),hobs(l)) in the con-l � 1
trol population]/[no. of occurrences of hobs(l) in the con-
trol population]. In practice, if any frequency estimate
in the control population is zero, we adjust the distri-
bution so that the frequency is given a low but nonzero
value.

We maximize likelihood (2) over the ancestral hap-
lotype and t�1 simultaneously. In principle, this could
be done by maximizing likelihood (2) over t�1 for each
possible ancestral haplotype, then choosing, as our max-
imum-likelihood estimate, the ancestral haplotype and
corresponding t�1 for which the maximized likelihood
is highest. In practice, the number of possible ancestral
haplotypes makes this approach infeasible. Instead, we
implement a branch-and-bound procedure to maximize
the likelihood without needing to maximize likelihood
(2) for every possible ancestral haplotype. The procedure
is described in more detail in Appendix B.

As one moves farther away from the variant, the es-
timation of the ancestral haplotype becomes progres-
sively less certain, because the number of individuals still
sharing the ancestral haplotype decreases. Thus, it is sen-
sible to estimate the ancestral haplotype only out to a
distance from the variant at which there is still a rea-

sonable amount of sharing in the data set. We measure
the amount of sharing of the ancestral haplotype out to
a certain marker in the data set by the expected number
of individuals still sharing the ancestral haplotype out
to that point, conditional on the data and the parameter
estimates (for details, see Appendix B). Through simu-
lation, we find that stopping the ancestral-haplotype es-
timation at a distance at which the conditional expected
number of individuals sharing the haplotype drops to
!5 or !25% of the sample size, whichever is greater,
provides an estimator of t�1 that has little or no bias,
even for small sample sizes (see “Simulation Results for
Assessment of Magnitude of LD around a Variant” in
Results section, below). On the other hand, for the mul-
tilocus mapping problem, it is necessary to include in
the likelihood the same data for each possible location,
and we are generally not concerned about bias in the
estimation of t�1 in that case. Thus, in the mapping
problem, we do not impose any threshold for stopping
the reconstruction of the ancestral haplotype.

Allowing for Chance Sharing of Alleles

In any assessment of LD, it is important to take into
account chance sharing at the loci surrounding the var-
iant. If we were to neglect the effects of chance sharing
in our model, our estimate for the LD parameter t�1

would tend to be biased upward, and results would tend
to depend on the allele distributions at the markers that
we happened to study. (Note, however, that, because we
consider sharing at locus i, conditional on sharing at all
loci between i and 0, chance sharing would have much
less effect on the results than it does in assessments of
LD using only pairs of loci.) To take into account chance
sharing of alleles other than the variant, we simply sum
the likelihood for the sampled haplotype over all possible
breakpoints of the ancestral segment consistent with the
data. Recall that the breakpoints of the ancestral seg-
ment are the nearest crossovers flanking the variant over
the t meioses occurring between the ancestral haplotype
and the sampled haplotype. For instance, if the sampled
haplotype matches the ancestral haplotype at loci �k
through j but not at locus and locus , then�k � 1 j � 1
the left breakpoint of the ancestral segment could be
anywhere between the variant and locus , and�k � 1
the right breakpoint of the ancestral segment could be
anywhere between the variant and locus . Thus, wej � 1
replace the likelihood in equation (2) by

j k

�1 �1L(h ,t ; h ) = g(t ,�l,i)��anc obs
i=0 l=0

#P [h (i � 1),h (i � 2),...]null obs obs

#P [h (�l � 1),h (�l � 2),...] . (3)null obs obs
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Allowing for Mutation

A descendant haplotype may vary from its ancestor
not only because of the effects of recombination but also
because of mutation. We modify likelihood (3) to take
into account mutation as well. A rather general model
for point mutation could include parameters ml, giving
the mutation rate per meiosis per generation at locus l,
and a transition matrix Pl, with ijth entry giving the
probability that the mutation is to allele j at locus l,
conditional on the mutating allele being allele i at locus
l. Allowing a nonzero diagonal for Pl allows different
alleles at a locus to have different mutation rates. Under
this model, the probability that a tth-generation de-
scendant has allele j at locus l, given that the ancestral
haplotype has allele i at locus l and conditional on no
crossover events between the variant and locus l during
the intervening t meioses, is

t

t k t�k km(l, t, i, j) = m (1 � m ) P ,( )� l l l( ) (ij)kk=0

where is the ijth element of the kth power of thek(P )l (ij)

matrix Pl. For simplicity, in our present implementation
we focus on the case when for all l and the ijthm = ml

element of Pl is 0 if and is otherwise, wherei = j 1/(n � 1)l

nl is the number of alleles at locus l; that is, the mutation
rate is the same across all loci, and, when a mutation
occurs, it is equally likely to change to any of the other
alleles at that locus. Then

nl tm(l, t, i, i) = (1 � m )
n � 1l

n 1l t� 1 � (1 � m ) ,[ ]
n � 1 nl l

and , for . Ex-m(l, t, i, j) = [1 � m(l, t, i, i)]/(n � 1) i ( jl

tension to more-elaborate models is feasible.
Allowing for mutation increases the number of pos-

sible intervals in which the breakpoints of the ancestral
haplotype (i.e., crossover points flanking the variant af-
ter t meioses) could occur in an observed descendant
and still be consistent with the observed data. For in-
stance, in likelihood (3), the right breakpoint of the an-
cestral haplotype can be assumed to occur somewhere
between the variant and locus , because loci 1,),jj � 1
match the ancestral haplotype by state whereas locus

does not match. However, when mutation is takenj � 1
into account, it is possible that the right breakpoint of
the ancestral haplotype is beyond locus and thatj � 1
mutation rather than recombination causes locus j � 1
not to match the ancestral haplotype. Allowing for mu-
tation, we replace likelihood (3) by

�1L(h ,t ; h )anc obs

il lre le

�1= g(t ,�j,i) � m(k,t,h (k)h (k))�� { anc, obs
k=�ji=0 j=0

#P [h (i � 1),h (i � 2),...]null obs obs

#P [h (�j � 1),h (�j � 2),...] , (4)}null obs obs

where lre and �lle are the indices of the markers at the
right and left edges of the data set, respectively, and
where and are the alleles at locus k in theh (k) h (k)anc obs

ancestral and sampled haplotypes, respectively. Here we
assume that the parameter m is known. Alternatively, it
could be estimated by maximum likelihood, along with
t�1 and the ancestral haplotype.

Allowing for Multiple Origin of the Variant

It is possible that the variant under consideration may
have arisen more than once and, thus, may lie on two
or more ancestral haplotypes that may be partially pre-
served in the present sample. Unless the sample is ex-
tremely large, it is unlikely that many distinct ancestral
haplotypes could be identified and estimated. First, sup-
pose that there is only one ancestral haplotype that can
be well estimated but that we wish to allow for some
proportion of observed haplotypes that are not de-
scended from this ancestor. We introduce a parameter p
to represent the proportion of the variant haplotypes in
the population that are not descended from this ancestral
haplotype; and is the proportion of variant hap-1 � p
lotypes that are descended from the given ancestor. Then,
conditional on a sample haplotype containing the var-
iant, the likelihood of this observation is calculated as

�1(1 � p)L(h ,t ; h ) � pP (h ) ,anc obs null obs

where is given in equation (4) and�1L(h ,t ; h )anc obs

is the probability of the haplotype estimatedP (h ) hnull obs obs

from the control population. As above, is es-P (h )null obs

timated under a Markov model if control haplotypes are
available, or it may be estimated by the product of the
allele frequencies in the control population if control
haplotypes are not available. When , we obtainp = 0
equation (4). This model assumes that the proportion p
of variants that are nonancestral are on haplotypes ran-
domly chosen from the population. In “Simulation Re-
sults for Fine-Scale Genetic Mapping by LD” (see Re-
sults, below), we examine the effect on mapping when
this model is used to analyze data in which there are
actually two distinct ancestral haplotypes. For the cases
that we have simulated, the model still seems to perform
well.

If, in maximizing the likelihood over the ancestral hap-
lotype, we identify two distinct ancestral haplotypes that
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both give high likelihoods, we could consider maximiz-
ing a likelihood of the form

�1 �1p L(h ,t ; h ) � p L(h ,t ; h )1 anc1 1 obs 2 anc2 2 obs

�(1 � p � p )P (h ) ,1 2 null obs

where is the likelihood calculated under�1L(h ,t ; h )anci i obs

ancestral haplotype i and where is the parameter t�1�1ti

corresponding to ancestral haplotype i, .i = 1,2

Independence of Recombinational Histories: Baum/EM
Algorithm

So far, we have discussed only the likelihood for an
individual observation. To combine the likelihood
across individuals, we need a model for dependence
among the individuals. First, consider the case in which
variant-containing descendants of the ancestral hap-
lotype are assumed to have independent recombina-
tional histories—that is, the breakpoints of their an-
cestral blocks are independent. This is equivalent to
assuming a star-shaped phylogeny, which corresponds
to a limiting case of rapid growth of the variant pop-
ulation, either due to selection or by chance (although
it does not necessarily imply rapid growth of the overall
population). This could also be seen as a first-order
approximation to the likelihood for more-general mod-
els involving dependence of haplotypes, which are dis-
cussed further in the next subsection, “Dependent Re-
combinational Histories.”

In the case of independence, the likelihoods for the
individual observations are simply multiplied to obtain
the likelihood for the sample. Rather than summing each
individual’s likelihood over all possible breakpoints, as
in equation (4), and over the possibilities of whether the
variant is ancestral or nonancestral, and then multiply-
ing these probabilities, we use the hidden Markov struc-
ture of the likelihood and employ the Baum/EM algo-
rithm (Baum 1972) to maximize the likelihood. Below
we present the hidden Markov model used to maximize
the likelihood, taking into account chance sharing, mu-
tation, and multiple origin of the variant. Modifications
of this method allow incorporation of missing data and
ambiguously determined haplotypes. The hidden Mar-
kov method that we describe assumes that both the lo-
cation of the variant and the ancestral haplotype are
known. To maximize the likelihood over ancestral hap-
lotype and/or location of variant, in addition to the other
parameters, we would, in principle, perform the hidden
Markov method for every possible choice of ancestral
haplotype and location and take the location, ancestral
haplotype, t�1, and p for which the maximized likeli-
hood is highest. In practice, we reduce the number of
ancestral haplotypes considered, by using a branch-and-

bound algorithm (Appendix B), and we consider a fine
grid of possible variant locations.

Consider a discrete-time Markov chain {Rl} with state
space {A,M,N}, where A denotes “ancestral,” M denotes
“mutated,” and N denotes “nonancestral.” An allele in
a haplotype is defined as being in the ancestral state if
the entire segment between the site of that allele and the
center locus is inherited unbroken by crossovers from
the ancestral haplotype and if that site has not mutated
to an allele different from that in the ancestral haplotype.
Note that sites between that allele and the center locus
may have mutated. An allele is defined as being in the
mutated state if the entire segment between the site of
that allele and the center locus is inherited unbroken by
crossovers from the ancestral haplotype and if that site
has mutated to an allele that does not match the ances-
tral haplotype. An allele is defined as being in the non-
ancestral state if, during the time since the ancestor, at
least one crossover has occurred between the site of the
allele and the center locus. Let l index the markers. For
the moment, we can consider that we have two chains,
one indexed by and one indexed byl = 0,1,2,...,l l =re

. As long as the value of the chain at0, � 1, � 2,..., � lle
(variant) is not known, the two chains are depen-l = 0

dent. The transition matrix for the right-hand chain
(and for the left-hand chain but with replaced byl � 1

in the latter chain) isl � 1

a =(l,l�1)

A M N
�td ′ �td ′ �tdl,l�1 l,l�1 l,l�1A e m (l,t) e [1 � m (l,t)] 1 � e 
�td ′ �td ′ �tdl,l�1 l,l�1 l,l�1M e m (l,t) e [1 � m (l,t)] 1 � e , 

N 0 0 1 

(5)

where , the chance that an al-′m (l,t) = m(l,t,h (l)h (l))anc anc

lele has not mutated to a type that does not match the
ancestor, conditional on no recombination between it
and the center locus. In fact, we can reverse the direction
of the left-hand chain and create a single nonhomoge-
neous Markov chain, , with′{R ,l = �l ,..., � 1,0,1,...,l }l le re

transition matrix (5) holding for , and with thel � 0
following transition matrix holding for :l ! 0

a =(l,l�1)

A M N
′ ′A m (l,t) 1 � m (l,t) 0 
′ ′M m (l,t) 1 � m (l,t) 0 , 

′ ′N b(l,t,p)m (l,t) b(l,t,p)[1 � m (l,t)] 1 � b(l,t,p) 
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where .tx tx txl�1 l lb(l,t,p) = [(1 � p)(e � e )]/[1 � (1 � p)e ]
Consider the associated observation sequence

, where Ol is the observed allele at{O , � l � l � l }l le re

locus l. If we use a first-order Markov chain to model
nonancestral haplotypes, then we have P{O =l

if j is ancestral and = 0 otherwise;jFR ,R = A,O } = 1l�1 l l�1

if j is nonancestralP{O = jFR ,R = M,O } = 1/(n � 1)l l�1 l l�1 l

and we use the mutation model described earlier,
, andP{O = jFR = A,R = N,O } = f (j) P{O = jFR =l l�1 l l�1 l l�1

, where f(j) is the control-pop-N,R = N,O = i} = f(iFj)l l�1

ulation frequency of allele j at locus l, and f(iFj) =
, where f(i,j) is the joint frequency of i at locusf(i,j)/f(j)

and j at locus l in the control population. Thenl � 1
{Rl,Ol} is Markov. We apply the algorithm of Baum
(1972) (an introduction is provided by Rabiner [1989]),
which is both a precursor and a special case of the EM
algorithm of Dempster et al. (1977). The incorporation
of missing haplotype information and ambiguous hap-
lotype determination is a more complicated variant of
the above.

The Baum algorithm is easily adapted to provide de-
rivatives of the log-likelihood, from which the observed
Fisher information can be calculated to obtain standard
errors for t�1 and p. For the mapping problem, recall
that, for each possible location in a fine grid, we use the
Baum algorithm combined with a branch-and-bound al-
gorithm (Appendix B), to maximize the likelihood over
ancestral haplotype, t�1, and p. Then, to obtain a CI for
the location of the variant, we invert the likelihood-ratio
test, the same procedure that was followed by Devlin et
al. (1996) and Lazzeroni (1998).

Dependent Recombinational Histories

As before, suppose that we have a sample of tth-gen-
eration descendant haplotypes. First, assume that only
two of the haplotypes, H1 and H2, are related more re-
cently than t. Let ta (“time apart”) denote the time to
the most recent common ancestor of the pair. Let t =t

(“time together”). If time is considered to runt � ta

backward from the present, then from time 0 to time ta

the two haplotypes in the pair had independent recom-
binational histories, whereas from time ta to time t they
had identical recombinational histories.

For , let Ri and Li denote the right and lefti = 1,2
breakpoints, respectively, of the ancestral block within
Hi. Then, under the given model, the joint distribution
of (R1,L1,R2,L2) can be summarized into two cases: (i)
with probability , , which is expo-t /(t � 2t ) R = Rt t a 1 2

nentially distributed with rate , and (ii) witht � 2tt a

probability , min(R1,R2) is exponentially2t /(t � 2t )a t a

distributed with rate andt � 2t max (R ,R ) =t a 1 2

, where E is exponentially distributedmin (R ,R ) � E1 2

with rate t, independent of min(R1,R2) (see Appendix
C). (L1,L2) is independent of (R1,R2) and has the same

distribution. This result can be directly used to compute
the likelihood contribution of the dependent pair of
haplotypes. It also follows that the correlation between
R1 and R2, which is the same as both the correlation
between L1 and L2 and that between andR � L1 1

, isR � L2 2

t t � tt a= . (6)
t � 2t t � tt a a

In principle, such calculations can be extended to
larger numbers of haplotypes of known relationship and
can be used to compute the likelihood of the data. How-
ever, these calculations very quickly become quite com-
plicated as the number of dependent haplotypes in-
creases. Furthermore, in many cases of interest, the exact
relationship between individuals in the sample either is
not known—for example, if “unrelated” individuals are
sampled—or may be exceedingly complex—for exam-
ple, in an inbred isolate. Then, the approach that we
take is to obtain covariances between observations, on
the basis of the available model for the ancestry of the
sample, and to maximize the quasi likelihood (Wedder-
burn 1974) in the complete-data case, which we gen-
eralize to a quasi-score estimating equation in the in-
complete-data case. We focus on the case when
“unrelated” individuals are sampled and an exchange-
able population model is assumed. Then, as shown be-
low, the maximum quasi-likelihood estimator is the same
as the maximum-likelihood estimator for the case of
independence, but with the standard error inflated by a
factor depending on the correlation.

Quasi-Score Estimating Equation

When observations are dependent, we use a quasi-
score estimating equation as a way to obtain some of
the desirable properties of maximum-likelihood esti-
mation but use only the marginal likelihoods and the
covariances between observations. We first introduce the
quasi-score function for the complete-data case, then
show the extension to the estimating equation that we
use in the incomplete-data case. Finally, we focus on the
case of “unrelated” individuals and assume an ex-
changeable population model for them.

In the simplest case of complete data with dense
markers, the vector of observed lengths of ancestral
segments is a sufficient statistic for t�1,Ts = (s ,...,s )1 n

and the marginal distribution of each length is
gamma(2,t). As a consequence, if we let , them = 2/t
mean length of the ancestral segment, and ,2v(m) = m /2
the variance of the length of the ancestral segment, then
the derivative of the log-likelihood l with respect to m,
called the “score function,” for a single observation is



McPeek and Strahs: Decay of Haplotype Sharing 865

given by . In the case of indepen-�l (m; s) = (s � m)/v(m)�m

dent recombinational histories, the score function for
a sample size of n haplotypes would be �l (m; s) =�m

, where 1 is a column vector of 1’s ofT1 (s � m1)/v(m)
length n. When the ancestral-segment lengths s are de-
pendent with covariance matrix Cm having (i,j)th entry
equal to covm(si,sj), where the subscript m indicates pos-
sible dependence on m, then the quasi-score function is
given by . This is the quasi-like-T �1Q(m; s) = 1 C (s � m1)m

lihood score function defined by Wedderburn (1974).
When the observations are uncorrelated, the likelihood
score function is obtained as before. The quasi-score
function may be set equal to 0 and solved to obtain an
estimator of m (and, hence, of t�1). This estimator has
many of the same desirable properties as a maximum-
likelihood estimator. Its properties generally include ap-
proximate unbiasedness and asymptotic normality,
with asymptotic standard error (McCullagh

1T �1 �
2(1 C 1)m

and Nelder [1989] provide a detailed discussion).
With real data—that is, when observations are

made on nondense markers with chance sharing pos-
sible—we extend the quasi-score estimating equation
to the more general formulation ′Q (m; data) =

, where K is the correlation matrix of�lT �11 K (m; data)m �m

(m; data); that is, Q′ is a weighted sum of score�l
�m

functions across the individual haplotypes, where the
weights are given by the inverse correlation matrix of
the score functions. This is a special case of an esti-
mating equation discussed by Lindsay (1988). In the
complete-data case, this reduces to the previous for-
mulation. The arguments for approximate unbiased-
ness and asymptotic normality, with asymptotic stan-
dard error , where var is the

1T �1 �˙ ˙
2{1 [K var(l)] 1} (l)m

variance of the score function for a single haplotype,
follow the same lines as those for the quasi likelihood,
but they depend crucially on the fact that the variances
of the score functions for individual haplotypes,
var , are equal across observations.˙(l)

The framework that has been discussed above is
very general, and we now focus more specifically on
its application in case the matrix Cm (complete data)
or Km (incomplete data) has all nondiagonal entries
equal. In the complete-data case, this assumption is
that the covariance between any pair of observations
is assumed to be the same, say , where cm

2(2/m )c 1 0m

is the correlation. This would occur when there is no
information on the relatedness of the sampled hap-
lotypes, beyond an assumed population model such
as the coalescent model. Then Q(m; s) = [1 � (n �

. Solving is equiva-�1 2 T1)c ] (m /2)1 (s � m1) Q(m; s) = 0m

lent to solving (i.e., equivalent to max-T1 (s � m1) = 0
imizing the likelihood under independence). Thus, in
the complete-data case with all covariances equal, the
quasi-likelihood estimator is equal to the maximum-
likelihood estimator in the case of independence, but

the standard error of the estimator is inflated by the
factor . With incomplete data, assume�1 � (n � 1)cm

that Km has all nondiagonal entries equal to
km. Then, .�l′ �1 TQ (m; data) = [1 � (n � 1)k ] 1 (m; data)m �m

Thus, solving is equivalent to solving′Q (m; data) = 0
(i.e., equivalent to maximizing the�lT1 (m; data) = 0�m

likelihood under independence). Thus, with incom-
plete data also, the quasi-score estimator equals the
maximum-likelihood estimator in the case of inde-
pendence, with the standard error of the estimator
inflated by the factor .�1 � (n � 1)km

Example of the Conditional-Coalescent Model

We consider the case in which the ancestral process
of the observed haplotypes is modeled by a coalescent
conditional on time t to the most recent common an-
cestor. To calculate the correlation between individual
observations under this model, we use the result, given
in equation (6), that the correlation is equal to (t �

. With probabilityt )/(t � t ) 2(n � 1)/[(n � 1)(n � j �a a

, a random pair will coalesce at the jth co-1)(n � j � 2)]
alescent time, where time proceeds backwards. In that
case, ta would be equal to the jth coalescent time. The
final ingredient required for the calculation is the dis-
tribution of the jth coalescent time, conditional on time
t to the most recent common ancestor; this is given in
Appendix D, along with an expression for the correla-
tion calculated under this model. In practice, we use an
approximation to the correlation that is valid when t is
small relative to twice the effective population size,
which is often taken to be . (In the EPM1 data42 # 10
set of Virtaneva et al. [1996], we estimate t to be ∼34;
in the CF data set of Kerem et al. [1989], we estimate
t to be ∼105.) This approximate correlation cn, which
is given in Appendix D, does not depend on the value
of t, although it does depend on the sample size n. With
real data sets—that is, with incomplete data—the value
required is k, the correlation between the score functions
for two individuals, rather than c, the correlation be-
tween the segment lengths for the two individuals. Al-
though, in principle, k could be obtained by simulation,
we instead use the complete-data approximation .k ≈ c
Thus, using the quasi-likelihood estimating equation to
estimate t�1 under the coalescent model, we obtain the
same estimate as was obtained in the independence case,
but with the standard error inflated by the factor

. Similarly, the log-likelihood that we use�1 � (n � 1)cn

is the same as that in the independence case but is mul-
tiplied by the factor . Using these ad-�1[1 � (n � 1)c ]n

justed standard errors and log-likelihoods, we obtain
CIs for t�1 and location as described above for the in-
dependence case. Simulation results indicate that, in
practice, this procedure gives CIs with essentially correct
coverage for both t�1 and location, under the condi-
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Table 1

Performance of DHS for Estimation of LD, When True Value of t51

= 1, p = 0, m = 0, Location of Variant Is Known, and Ancestral
Haplotype Is Unknown

SAMPLE SIZE AND MAPa

MEAN ESTIMATE OF t�1

(COVERAGE OF 95% CI)

Independence Coalescent

25:
Biallelic 1.0 (.95) 1.1 (.96)
Microsatellite 1.0 (.95) 1.1 (.98)

50:
Biallelic 1.0 (.95) 1.0 (.95)
Microsatellite 1.0 (.95) 1.0 (.96)

75:
Biallelic 1.0 (.95) 1.0 (.95)
Microsatellite 1.0 (.95) 1.0 (.95)

a Biallelic markers have allele frequencies of 70% and 30% and
0.2-cM spacing; microsatellite markers have heterozygosity of 85%
and 0.5-cM spacing.

tional-coalescent model (see “Simulation Results for As-
sessment of Magnitude of LD around a Variant” and
“Simulation Results for Fine-Scale Genetic Mapping by
LD,” below).

Results

Simulation Studies

To evaluate the application of the decay of haplotype
sharing (DHS) method to solution of both problem 1,
assessment of the magnitude of LD around a variant,
and problem 2, fine-scale genetic mapping by LD, we
perform simulation studies. Several scenarios are simu-
lated, including those of (a) a single ancestral haplotype
with all individuals descended from it, (b) a single an-
cestral haplotype with some individuals not descended
from it and instead having randomly generated haplo-
types, and (c) two distinct ancestral haplotypes each hav-
ing descendants in the sample. Each ancestral haplotype
is generated randomly, and the time t to the ancestor
and the number of descendants of the ancestor in the
sample are fixed. Simulations are performed under the
independence assumption and under the conditional-co-
alescent assumption for the relationship among the de-
scendants of the ancestor. When independence is as-
sumed, mutations and recombinations are simulated for
each descendant independently. When the conditional
coalescent is assumed, a tree is simulated according to
that distribution (see Appendix D), with mutations and
recombinations generated along each branch.

We perform the simulations under somewhat unfa-
vorable conditions—that is, low sample size and low
marker density—compared with what is available in the
two data sets that we analyze below. Most of our sim-
ulations involve sample sizes of 50 or 63 haplotypes,
whereas the EPM1 data set of Virtaneva et al. (1996)
has a sample size of 88 and the CF data set of Kerem
et al. (1989) has a sample size of 94. In our simulations,
the true t is 100 generations (i.e., ), and we�1t = 1 cM
consider the cases of a 0.5-cM map of microsatellites
with heterozygosity .85 and a 0.2-cM map of biallelic
markers with allele frequencies .7 and .3. One relevant
quantity for comparison of marker resolution across
data sets is [�t(intermarker distance, in Mor-1 � exp
gans)]. This quantity is the expected proportion of hap-
lotypes that experience a crossover between a given pair
of adjacent loci. If this number is too high, then sharing
by descent will drop off so rapidly between markers that
there will not be sufficient resolution to estimate t�1. For
our simulated microsatellite map this quantity is .39,
whereas for our biallelic map it is .18. For comparison,
the data set of Kerem et al. (1989) has biallelic markers
with average distance between them of only 80 kb,
which we convert to 0.0008 Morgans, and an estimated

t of 105, so [�t(intermarker distance)] = .08.1 � exp
In the data set of Virtaneva et al. (1996), microsatel-
lite markers are used with average intermarker distance
of 224 kb and an estimated t of 34, giving

[�t(intermarker distance) . Thus, the1 � exp ] = .07
marker resolution in our simulations is inferior to that
in the data sets.

Simulation Results for Assessment of Magnitude of LD
around a Variant

One purpose of the first set of simulations (table 1)
is to evaluate the effect that ancestral-haplotype recon-
struction has on the estimate of t�1. Recall that we max-
imize the likelihood over the ancestral haplotype but
that, for estimation of t�1, we estimate an ancestral hap-
lotype only out to a distance from the variant at which
the expected number of individuals still sharing the an-
cestral haplotype, conditional on the data, drops to !5
or !25% of the total sample size, whichever is greater,
as described in “Estimation of the Ancestral Haplotype”
(see Methods section above) and Appendix B. We wish
to examine whether the estimation of an ancestral hap-
lotype causes any serious bias in the estimation of t�1,
or whether the uncertainty in that estimation can lead
to undercoverage of the 95% CIs. For this reason, in
table 1 we simulate haplotypes spanning a greater ge-
netic distance than is spanned in either of the data sets,
to ensure that a drop to only 25% of individuals sharing
is achieved. This should accentuate any bias over the
case in which the drop in sharing to the end of the
haplotype is less severe. Data are analyzed under the
same model (independence or conditional coalescent)
that is used to generate them. The mutation rate and
heterogeneity parameter are assumed to be 0, and the
location of the variant is assumed to be known. For each
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Table 2

Performance of DHS for Estimation of LD with Mutations and Nonancestral Haplotypes, When
True Value of t51 = 1, Location of Variant Is Known, and Ancestral Haplotype Is Unknown

m

NO. (%) OF HAPLOTYPES
p

ESTIMATED? MAPa

MEAN ESTIMATE OF t�1

(COVERAGE OF 95% CI)

Ancestral Nonancestral Independence Coalescent

�75 # 10 50 0 No Biallelic 1.0 (.95) 1.0 (.95)
�75 # 10 50 13 (20.6) Yes Biallelic 1.0 (.95) 1.0 (.93)
�32 # 10 50 0 No Microsatellite 1.0 (.95) 1.1 (.96)
�32 # 10 50 13 (20.6) Yes Microsatellite 1.0 (.94) 1.1 (.98)
�32 # 10 75 0 No Microsatellite 1.0 (.95) 1.0 (.95)
�32 # 10 75 19 (20.2) Yes Microsatellite 1.0 (.95) 1.0 (.97)

a See footnote to table 1.

case, 3,000 realizations are generated. For the case of
independence, there is no detectable bias in the simu-
lations, and the 95% CI covers the true value 95% of
the time, even for a sample of size 25 (table 1). Under
the conditional-coalescent model, for a sample size of
25, there is a slight bias and slight conservativeness of
the CI, but they disappear by sample size 50 (table 1).
Furthermore, we find that, even for small sample sizes,
the sampling distribution of the estimated LD value

is well approximated by the normal distribution (re-�1t̂

sults not shown), for both the independence and con-
ditional-coalescent cases.

In the second set of simulations (table 2), we consider
performance of the DHS method for assessment of LD
when there are mutations and when there are some hap-
lotypes in the sample that are not descended from the
ancestor. For the biallelic loci we assume a mutation rate
of , whereas for the microsatellites we assume�75 # 10
a much higher mutation rate of , where these�32 # 10
rates are per locus per meiosis. For most of the simu-
lations, we use a sample of 50 haplotypes descended
from a common ancestor, with either 0 or 13 additional
nonancestral haplotypes. In each case, the 50 haplotypes
are simulated under either the independence or the con-
ditional-coalescent model, with recombinations and mu-
tations superimposed, whereas the nonancestral haplo-
types are generated randomly and independently, with
their distribution determined by the marker-allele fre-
quencies. In each case, t�1 and the ancestral haplotype
are estimated. In the cases when nonancestral haplotypes
are present, p is also estimated. The location of the var-
iant and the mutation rate are assumed to be known.
Data are analyzed under the same model (independence
or conditional coalescent) that is used to generate them.
For each case, 2,000 realizations are generated.

In our simulations, we find that estimation assuming
no mutation and estimation assuming a mutation rate
of produce virtually identical results and that�75 # 10
introduction of mutations into the data at such a low
rate has almost no effect; however, this is no longer true

at the higher rate of . Table 2 shows that cov-�32 # 10
erage of the 95% CI is quite good in all cases, with only
slight overcoverage in the conditional-coalescent case.
Inclusion of 20% nonancestral haplotypes does not ap-
pear to cause bias or to have much effect on the coverage.
With the mutation rate of and the conditional-�32 # 10
coalescent model, the DHS method gives a slightly biased
estimate of t�1 with only 50 descendant haplotypes, but
this slight bias disappears with 75 descendant haplotypes
(see table 2).

Simulation Results for Fine-Scale Genetic Mapping by
LD

We assess the performance of the DHS method for
fine-scale genetic mapping in cases in which the ancestral
haplotype is known and in cases in which it is unknown.
When both the ancestral haplotype and the location of
the variant are unknown, the DHS method becomes
somewhat computationally intensive, especially with
very polymorphic markers. Thus, we have performed
only a small set of simulations of that case, limited to
biallelic loci. Mapping simulations for the case when the
ancestral haplotype is known can be performed much
more readily. We have used such simulations to inves-
tigate a wider range of questions, including how mu-
tations affect mapping using microsatellite markers, and
also to identify, for biallelic loci, the scenarios that are
the most challenging for the DHS method; these lat-
ter—namely, the conditional-coalescent case with either
nonancestral haplotypes or multiple ancestors—are the
scenarios that we have chosen to investigate in the more
realistic simulations with ancestral haplotype unknown.

Table 3 shows the mapping results when independence
holds and the ancestral haplotype is known; table 4
shows the same set of simulations for the conditional-
coalescent model. In both tables, 1,000 realizations are
generated for each case. Coverage of the 95% CI for
location is very close to 95% in all cases. The median
lengths of CIs for location in the independence case are
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Table 3

Performance of DHS for Fine Mapping with Mutations and Nonancestral Haplotypes, Where True Value of t51 = 1, Independence Holds,
Ancestral Haplotype Is Known, and Location and t51 Are Unknown, 50 Ancestral Haplotypes

MUTATION RATE

NO. (%) OF

NONANCESTRAL

HAPLOTYPES

p
ESTIMATED? MAPa

95% CI FOR

LOCATION

PROPORTION OF

LOCATION ESTIMATES

MEAN

ESTIMATE

OF t�1True Assumed Coverage
Median
Length

In Correct
Interval

�1 Interval
off Correct

Interval

0 0 0 No Biallelic .94 .16 cM .92 .997 1.0
0 0 0 No Microsatellite .96 .20 cM 1.00 1.00 1.0
0 0 13 (20.6%) Yes Biallelic .94 .23 cM .84 .996 1.0
0 0 13 (20.6%) Yes Microsatellite .95 .25 cM .999 1.00 1.0

�75 # 10 �75 # 10 13 (20.6%) Yes Biallelic .95 .24 cM .85 .996 1.0
�32 # 10 �32 # 10 13 (20.6%) Yes Microsatellite .94 .30 cM .98 1.00 1.0
�31 # 10 �32 # 10 13 (20.6%) Yes Microsatellite .95 .30 cM .996 1.00 1.1
�31 # 10 �45 # 10 13 (20.6%) Yes Microsatellite .95 .25 cM .99 1.00 .9

a See footnote to table 1.

quite small, 0.16–0.3 cM. They are substantially larger
for the conditional-coalescent model, 0.35–0.68 cM.
Similarly, the proportion of location estimates that are
in the correct marker interval is different under the
two models. For the 0.5-cM microsatellite map, the lo-
cation estimates are in the correct marker interval vir-
tually 100% of the time under independence, versus
86%–96% of the time under the conditional-coalescent
model. The biallelic marker map that we used has much
smaller marker intervals, 0.2-cM, and in that case the
location estimates are in the correct marker interval
85%–90% of the time under the independence model,
versus 62%–71% of the time under the conditional-co-
alescent model. In nearly all cases, the estimated location
is no more than one marker interval off the correct in-
terval. When the mutation rate either is correctly spec-
ified in the model or is extremely low, the estimate of
t�1 taken at the maximum-likelihood estimate of loca-
tion has no apparent bias. We also consider the case
when mutation is incorporated into the model but the
mutation rate is misspecified by a factor of 2, either too
high or too low; this misspecification does not cause
problems in the mapping results, but it does result in a
bias in the estimate of t�1 taken at the maximum-like-
lihood estimate of location. As would be expected since
presence of mutation tends to decrease haplotype shar-
ing, if the assumed mutation rate is too high the estimate
of t�1 is biased upward, and if the assumed mutation
rate is too low the estimate of t�1 is biased downward.
These results suggest that microsatellite markers or other
markers with a high mutation rate can be successfully
used in LD mapping studies even if the mutation rate is
slightly misspecified; however, they also suggest that es-
timation of t�1 (or of time to the most recent common
ancestor of the sample) is not reliable, even in the case
of a relatively recent variant, unless the mutation rate
either is correctly specified in the model or is extremely

low. We did not try to estimate mutation rate in these
simulations, but that is also a possibility; however, the
true mutation rate is likely to vary across loci, so, unless
the rate could be well estimated for each locus, there
would still be mutation-rate misspecification.

In table 5 we give results of the mapping simulations
when location, ancestral haplotype, t�1, and p are all
unknown. Because of computational limitations, these
simulations are limited to the case of biallelic loci. We
consider only the conditional-coalescent model, since the
results under the independence model are always more
favorable. For each case, 100 realizations are generated.
Since this number is small, we report standard errors for
the coverage, for the proportion of location estimates in
the correct interval, and for the proportion �1 interval
off. For the case of 50 ancestral haplotypes and 13 ran-
dom nonancestral haplotypes, we can compare the first
line of table 5 with the third line of table 4, to see that
there is little difference in the results when the ancestral
haplotype is known versus when it is estimated. This
gives us some confidence that the other results in tables
3 and 4 may extrapolate readily to the case of unknown
ancestral haplotype. In table 5 we also consider the case
in which the sample consists of descendant haplotypes
of two distinct ancestral haplotypes. In each case, we
simulated 50 individuals under the coalescent model
conditional on a time of 100 generations to the most
recent common ancestor and simulated 13 individuals
from another conditional-coalescent process, indepen-
dent of the first, conditional on a time of 100 generations
(line 2 of table 5), 133 generations (line 3 of table 5),
or 80 generations (line 4 of table 5) to the most recent
common ancestor. The DHS method used is the version
in which only one ancestral haplotype is estimated and
haplotypes not descended from it are assumed to be
randomly drawn and independent; nonetheless, the
method still seems to perform quite well in this case.



McPeek and Strahs: Decay of Haplotype Sharing 869

Table 4

Performance of DHS for Fine Mapping with Mutations and Nonancestral Haplotypes, Where True Value of t51 = 1, Conditional-
Coalescent Model Holds, Ancestral Haplotype Is Known, and Location and t51 Are Unknown, 50 Ancestral Haplotypes

MUTATION RATE

NO. (%) OF

NONANCESTRAL

HAPLOTYPES

p
ESTIMATED? MAPa

95% CI FOR

LOCATION

PROPORTION OF

LOCATION ESTIMATES

MEAN

ESTIMATE

OF t�1True Assumed Coverage
Median
Length

In Correct
Interval

�1 Interval
off Correct

Interval

0 0 0 No Biallelic .95 .36 cM .71 .97 1.0
0 0 0 No Microsatellite .93 .35 cM .96 1.00 1.0
0 0 13 (20.6%) Yes Biallelic .97 .52 cM .62 .96 1.0
0 0 13 (20.6%) Yes Microsatellite .94 .45 cM .94 1.00 1.0

�75 # 10 �75 # 10 13 (20.6%) Yes Biallelic .96 .52 cM .64 .96 1.0
�32 # 10 �32 # 10 13 (20.6%) Yes Microsatellite .94 .68 cM .86 1.00 1.0
�31 # 10 �32 # 10 13 (20.6%) Yes Microsatellite .95 .65 cM .89 1.00 1.1
�31 # 10 �45 # 10 13 (20.6%) Yes Microsatellite .95 .53 cM .91 .999 .9

a See footnote to table 1.

There is some suggestion of undercoverage for the last
case in table 5, but the standard error is high. The lengths
of the CIs and proportions maximizing in the correct
interval and no more than one interval off are very sim-
ilar for the cases of one and two ancestral haplotypes.

Analysis of EPM1 Data Set of Virtaneva et al. (1996)

Virtaneva et al. (1996) report refinement of the lo-
cation of the EPM1 gene to a 175-kb interval in dis-
tal 21q, on the basis of data that include 88 five-locus
haplotypes spanning a 900-kb region (D21S1885-
D21S2040-D21S1259-D21S1912-PFKL) sampled from
affected individuals in Finland. Pennacchio et al. (1996)
report cloning of the EPM1 gene, which is found to be
between D21S2040 and D21S1259, ∼30 kb from
D21S2040. We apply the DHS method to the data set
of Virtaneva et al. (1996), to do multipoint mapping of
the EPM1 gene and to estimate the parameter t�1, which
is the expected genetic distance out to which the ances-
tral haplotype is preserved, or, equivalently, 1/(time in
generations to the ancestral haplotype).

Figure 1 shows the log-likelihood curve for multipoint
LD mapping when the heterogeneity parameter p is es-
timated and the mutation rate m is assumed to be

. The likelihood maximizes in the correct�45 # 10
marker interval, between D21S2040 and D21S1259.
The 95% CI based on independence (fig. 1, dotted hor-
izontal bar) does not contain the true gene (unbroken
vertical bar), whereas the 95% CI based on the condi-
tional-coalescent model (unbroken horizontal bar) does.
This suggests that the independence model does not fit
the data. The estimated heterogeneity parameter is not
significantly different from zero, so we are led to fit the
model with and . This log-likelihood�4p = 0 m = 5 # 10
plot is shown in figure 2. In that case, both 95% CIs
contain the true gene location, and again the likelihood
maximizes in the correct marker interval, this time even

closer to the gene. For comparison, the method of Ter-
williger (1995), as applied by Virtaneva et al. (1996),
maximizes in the wrong interval, although a 95% CI
obtained by inverting the likelihood-ratio test does con-
tain the true gene location. On the basis of the infor-
mation in figure 3 of Xiong and Guo (1997), their
method maximizes ∼0.40 cM from D21S1885, a posi-
tion identical to our estimate when andp = 0 m = 5 #

, and a 99% CI obtained by inverting the likelihood-�410
ratio test appears to contain the true gene location, but
a 95% CI obtained by the same method would not con-
tain the true gene location.

In the data set of Virtaneva et al. (1996), 65 (74%)
of the 88 haplotypes are identical, so there has been very
little decay of haplotype sharing across the data set. For
the problem of accurately estimating t�1, it would be
advantageous to have longer haplotypes, so that more
decay of sharing could be observed. (This is not neces-
sary for the mapping problem, in which it is the
comparison of log-likelihoods across locations that is
relevant, rather than the estimated value of t�1.) Fur-
thermore, note that this data set involves microsatellite
markers. Our simulations indicate that, when the mu-
tation rate is high, such as when microsatellites are used,
estimation of t�1 can be sensitive to assumptions about
mutation rate, whereas LD mapping is very robust to
such assumptions. For these reasons, the data set of Vir-
taneva et al. (1996) does not provide a lot of information
for estimation of t�1, although it is very useful for map-
ping. When the mutation rate is assumed to be m =

, we estimate t�1 to be 2.9 cM, with a 95% CI�45 # 10
of 0.48–5.40 cM, under the conditional-coalescent
model. This gives an estimate of 34 generations to the
most recent common ancestor of the sample, with a 95%
CI of 19–207 generations, under the conditional-coa-
lescent model. If m is assumed to be 0, then the corre-
sponding estimates are 2.1 cM, with a 95% CI of
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Figure 1 Log-likelihood versus location, for EPM1 data set of
Virtaneva et al. (1996), with the likelihood maximized over ancestral
haplotype, t�1 and heterogeneity parameter p, and with the mutation
rate fixed at . Location is given as distance from D21S1885.�45 # 10
The unbroken vertical line is the true variant location, the dotted
vertical line is the estimated location, the dotted horizontal line is the
95% CI when independence of recombinational histories is assumed,
and the unbroken horizontal line is the 95% CI when a conditional-
coalescent model is assumed.

Table 5

Performance of DHS for Fine Mapping in the Presence of Multiple Ancestral Haplotypes; Location, Ancestral Haplotype, t51,
and p Are All Unknown, and Conditional-Coalescent Model Holds, .2-cM Map of Biallelic Markers with Allele Frequencies of
70% and 30%

m

NO. (%) OF HAPLOTYPES

TRUE
�1t1

TRUE
�1t2

95% CI FOR LOCATION

PROPORTION (SD) OF

LOCATION ESTIMATES

From
Ancestor 1

From
Ancestor 2

Random
Nonancestral Coverage (SD)

Median
Length

In Correct
Interval

�1 Interval
off Correct

Interval

�75 # 10 50 0 13 (20.6%) 1 ) .98 (.01) .53 cM .6 (.05) .95 (.02)
�75 # 10 50 13 (20.6%) 0 1 1 .95 (.02) .48 cM .5 (.05) .97 (.02)
�75 # 10 50 13 (20.6%) 0 1 .75 .94 (.02) .53 cM .5 (.05) .93 (.03)
�75 # 10 50 13 (20.6%) 0 1 1.25 .90 (.03) .44 cM .6 (.05) .94 (.02)

0.35–3.9 cM, under the conditional-coalescent model,
or, equivalently, 47 generations, with a CI of 26–286
generations. For the same data set, Xiong and Guo
(1997) report an estimate of ∼70 generations for the age
of the mutation, which is consistent with our CI. In fact,
Xiong and Guo’s (1997) method, like ours, does not
actually estimate the age of the mutation in this case
but, rather, estimates the time to the most recent com-
mon ancestor of the sample, which will, in general, be
less than the actual age of the mutation. The population
of Finland, from which the sampled haplotypes are
drawn, is believed to be largely descended from a
small founder population whose expansion began
2,000–2,500 years ago (Nevanlinna 1972; Norio 1981;
de la Chapelle 1993). This suggests a rough guess of 100
generations for the age of the mutation, which is con-
sistent with our estimate and CI for the time to the most
recent common ancestor of the sample.

Analysis of CF Data Set of Kerem et al. (1989)

Kerem et al. (1989) identify the D508 mutation at the
CF gene on chromosome 7, which is believed to be re-
sponsible for 170% of CF cases among whites. Data
published by Kerem et al. (1989) include 94 CF hap-
lotypes, 63 of which contain the D508 mutation, and
92 normal haplotypes. Each haplotype consists of 23
biallelic markers within a 2-Mb region covering the gene.
Because normal haplotypes and not just allele frequen-
cies are available, we apply a Markov-chain model to
calculate the likelihood contribution of nonancestral
portions of haplotypes. All physical distances are con-
verted to genetic distances by use of the equivalence

. Figure 3 gives the resulting log-likelihood1 cM ≈ 1 Mb
curve when p is estimated. Assumed mutation rates of
0 and give indistinguishable results. The esti-�75 # 10
mated ancestral haplotype is the same across all choices
of location of the variant, as was also true for the data
set of Virtaneva et al. (1996). In this example, both the
95% CI based on independence and that based on the
conditional-coalescent model contain the true gene lo-
cation. At the estimated location, the heterogeneity pa-

rameter is .21, with an estimated standard error of .05,
indicating significant heterogeneity. A likelihood-ratio
test comparing the likelihood maximized over location,
ancestral haplotype, and t�1 when , versus the like-p = 0
lihood maximized over the these parameters plus p also
indicates that the model with p set equal to 0 demon-
strates very severe model misfit (results not shown). A
similar conclusion was reached by Devlin et al. (1996).

In comparison with our results, the method of Ter-
williger (1995) maximizes at position 0.77 on our plot,
but on the basis of his figure 4, a 99% CI obtained by
inverting the likelihood-ratio test would not contain the
true variant location, as has been pointed out by Devlin
et al. (1996). The method of Devlin et al. (1996) max-
imizes at 0.81, with a 99% search interval containing
the variant location, although a 95% search interval
would not contain the variant. (Note that Devlin et al.
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Figure 2 Log-likelihood versus location, for EPM1 data set of
Virtaneva et al. (1996), with the likelihood maximized over ancestral
haplotype and t�1, with heterogeneity parameter fixed at 0 and mu-
tation rate fixed at . Location is given as distance from�45 # 10
D21S1885. The unbroken vertical line is the true variant location, the
dotted vertical line is the estimated location, the dotted horizontal line
is the 95% CI when independence of recombinational histories is as-
sumed, and the unbroken horizontal line is the 95% CI when a con-
ditional-coalescent model is assumed.

Figure 3 Log-likelihood versus location, for CF data set of
Kerem et al. (1989), with the likelihood maximized over ancestral
haplotype, t�1, and heterogeneity parameter p. Location is given as
distance from D21S1885. The unbroken vertical line is the true variant
location, the dotted vertical line is the estimated location, the dotted
horizontal line is the 95% CI when independence of recombinational
histories is assumed, and the unbroken horizontal line is the 95% CI
when a conditional-coalescent model is assumed.

do not claim 95% coverage for their 95% search inter-
val.) The method of Xiong and Guo (1997) maximizes
at 0.8 cM, but, on the basis of their figure 1, the drop
in log-likelihood from the maximum of their curve to
the true gene location is ∼100, which excludes the true
gene location, . Lazzeroni (1998) obtains sev-�10P K 10
eral possible estimates for the gene location, with the
asymmetric piecewise linear version giving an estimated
location of 0.89, with a 95% CI containing the true
location.

For estimation of LD around the D508 mutation, or,
equivalently, the time to the most recent common an-
cestor of the D508 mutation in the sample, we make use
of the additional information of which of the haplotypes
actually contain this mutation (63 of the 94 haplotypes
in the sample of affected individuals contain the muta-
tion). We estimate t�1 to be 0.95 cM, with a 95% CI
of 0.44–1.46 cM under the conditional-coalescent as-
sumption and a 95% CI of 0.70–1.21 cM under inde-
pendence. This t�1 would correspond to a time of 105
generations, with a CI of 69–225 generations under the
conditional-coalescent assumption and a CI of 83–144
generations under independence. Devlin et al. (1996)
obtain an estimate of 96 generations, which is in close
agreement with our estimate.

Discussion

We have developed and implemented a new method
for assessment of LD—the DHS method—which is de-
signed to use multilocus haplotypes containing a partic-

ular variant, rather than to operate on pairs of loci.
Dependence among loci within a haplotype is explicitly
modeled, and dependence due to population structure
is taken into account with a quasi-score estimating equa-
tion that uses approximate correlations from a condi-
tional-coalescent model. Loci may be multiallelic, and
the method allows for multiple origin of variants, chance
sharing of alleles, mutations, ambiguous haplotype in-
formation, and missing data. This framework can be
applied either to the problem of assessment and com-
parison of levels of LD around different variants or to
the problem of multipoint fine-scale LD mapping.

If the ancestral haplotype were known, then our es-
timate of LD would be equivalent to 1/(age of the var-
iant). When the ancestral haplotype is estimated, our
estimate of LD is better interpreted as being 1/(time to
the most recent common ancestor of the variant-con-
taining haplotypes in the sample). The time to the most
recent common ancestor of the variant-containing hap-
lotypes in the sample will generally be less than the age
of the variant, even if the entire population of variant-
containing haplotypes is sampled. A similar interpreta-
tion holds for the times estimated by Devlin et al. (1996)
and Xiong and Guo (1997), although they do not ex-
plicitly draw this distinction between age of the variant
and time to the most recent common ancestor.

Simulation results show that the method performs
very well, providing low bias, small CIs, and accurate
coverage for estimation of t�1 and for LD mapping. Al-
though we estimate ancestral haplotype as a parameter
in the model, simulations indicate that this does not
introduce much bias into the estimation of the LD mea-
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sure t�1, even for small sample sizes and with some hap-
lotypes nonancestral. We also consider the effect that the
presence of descendants of multiple ancestral haplotypes
in the sample has on LD mapping. The mapping pro-
cedure still works extremely well. (It is not clear what
the “correct” value of t�1 should be in this case, since,
presumably, each ancestral haplotype has its own value,
so we did not study the effect that multiple ancestral
haplotypes have on the estimation of t�1.)

For the mapping problem, the simulations show that
the conditional-coalescent CI is much larger than that
under independence, and yet each has the correct cov-
erage for its particular case. Not surprisingly, the CI
based on independence gives severe undercoverage in the
conditional-coalescent case (results not shown). This in-
dicates that it is important to take into account popu-
lation structure, but the difficulty is that the appropriate
model is not known. The coalescent model applies when
the population size remains constant over time; thus it
is reasonable to expect that CIs under this model will
be conservative when there is population expansion, a
case that could be regarded as intermediate between the
coalescent and star-shaped/independence model. Such
population expansion seems likely to be the case for
humans.

When mutation is taken into account in the model,
slight misspecification of the mutation rate has little ad-
verse effect on mapping. A case that we did not consider
in our simulations—but that could have a greater ef-
fect—would be the case when one marker near the var-
iant has a mutation rate much higher than those of all
the others. One possible approach to detection of such
a scenario would be to perform the analysis while leaving
out one marker at a time, and to see if there is a no-
ticeable change in the results. Estimation of t�1 is more
sensitive to mutation rate than is mapping. When the
mutation rate is high and is misspecified in the model,
it leads to biased estimation of t�1. Thus, microsatellite
markers whose mutation rates are not well known may
still be very useful for LD mapping, but they are not
ideal if one is most interested in estimating either t�1 or
the time to the most recent common ancestor.

The model that we have implemented is based on the
assumption of no interference. In Appendix A, we de-
scribe how to include interference in the model. We argue
that the assumption of no interference even though in-
terference is known to exist is of little consequence here.
This is so because the genetic distances at which LD
around a variant would be detected are small enough
that multiple crossover events occurring there would be
extremely unlikely, even under no interference.

When control haplotypes are available, we apply a
simple Markov model to describe nonancestral haplo-
types. When only allele frequencies are available, there
is no alternative but to assume an independence model

for alleles in nonancestral haplotypes. In practice, this
seems to have relatively little effect on estimates of t�1

but seems to have a greater effect on the likelihood.
Thus, it is probably more important to have control
haplotypes for the mapping problem than for the prob-
lem of the assessment of LD around a variant.

The framework that we have described can, in prin-
ciple, be extended to apply to individuals of known re-
lationship, in which case the correlation between score
functions for different pairs of observations would differ.
In that case, the quasi-likelihood estimates would differ
from the maximum-likelihood estimates under inde-
pendence. This would be appropriate for application to
disequilibrium mapping in small isolated populations for
which relationships among individuals are known.
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Appendix A

Distributions of Length and Breakpoints of Ancestral
Segment, under Various Crossover Models

Stationary renewal–process models.—Assume that the
occurrence of crossovers along a single chromatid strand
follows a stationary renewal–process model in the ge-
netic-distance metric with mean interarrival time m =I

(by the definition of genetic distance) and for which1
the interarrival density fI(x) is defined. Examples include
the no-interference model of Haldane, for which the in-
terarrival density is , and the stationary gamma�xf (x) = eI

model of Foss et al. (1993), McPeek and Speed (1995),
and Zhao et al. (1995), for which the interarrival density
is , with the for-� k kg kg�1 �2gxf (x) = S 1/2 (2g) x e /(kg � 1)!I k=1

mer being a special case of the latter, with . For ag = 1
stationary renewal process, the density of the length of
the interval containing the variant (which we identify
with the origin) is (e.g., see Cox andxf (x)/m = xf (x)I I I

Isham 1980, pp. 7–8). It follows that, for ,a,b 1 0

P{no events in (�a,b) in one meiosis}

= (x � a � b)f (x)dx ,� I

x�a�b

because the left edge of an interval of length l containing
0 is uniform on (�l,0). Thus,
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P{no events in (�a,b) in t meiosis}
t

= (x � a � b)f (x)dx ,� I[ ]
x�a�b

which we denote as . Then the joint density ofg(a � b,t)
the left and right edges of the ancestral interval con-
taining 0 after t generations is 2� g(a � b,t)/�a�b =

. In the case of no interference, this gives2 2� g(l,t)/�l
independent exponential(t) breakpoints. Then the den-
sity of the length of the segment containing the variant
after t generations is 2 2l� g(l,t)/�l = tlg(l,t � 2)[(t �

, where21)G (l) � g(l,1)f (l)]I I

�

G (l) = f (x)dx .I � I

l

In the case of no interference, this gives a gamma(2,t)
density for the length of the segment containing the var-
iant after t generations.

Complete interference.—In the case of complete in-
terference, we have P{no events in (�a,b) in one meiosis}
= 1�a�b. Then, applying calculations analogous to
those used above, we determine that the density of the
length of the segment containing the variant after t gen-
erations is (i.e., the length ist�2f(l) = t(t � 1)(1 � l) l
beta distributed).[t � 1,2]

Appendix B

Reconstruction of the Ancestral Haplotype

In practice, to assess the magnitude of LD around a
variant, we maximize the likelihood over the ancestral
haplotype, using a branch-and-bound algorithm. This
procedure works as follows: start with the two loci flank-
ing the variant, and consider all possible ancestral hap-
lotypes for those two loci. Any ancestral haplotype for
the entire panel of markers will reduce to one of these
two-locus haplotypes when restricted to just these two
markers. Suppose that we can give upper and lower
bounds on the maximized likelihood for any ancestral
haplotype, for the full panel, that reduces to a particular
two-locus haplotype when haplotypes are restricted to
the given marker pair. If the upper bound for one two-
locus haplotype is lower than the lower bound for an-
other, then we need not give further consideration to any
ancestral haplotypes that give the former when haplo-
types are restricted to the two-marker set. We eliminate
all such two-locus haplotypes that will lead to sub-
optimal ancestral haplotypes for the full set. For the
remaining two-locus haplotypes, we add the nearest

marker and consider all possible three-locus haplotypes
containing the two-locus haplotypes kept at the previous
step. Again, we give upper and lower bounds on the
maximized likelihood for any ancestral haplotype, for
the full panel, that reduces to a particular three-locus
haplotype when restricted to the given marker trio. Then
we eliminate any three-locus haplotypes that will lead
to suboptimal ancestral haplotypes for the full set. We
proceed stepwise in this fashion, until we obtain the
maximum-likelihood estimates of ancestral haplotype
and t�1. Note that a lower bound as described above is
easily obtained by picking a representative ancestral hap-
lotype, for the full panel, that reduces to the particular
k-marker haplotype under consideration. For each
marker outside the k-marker haplotype, the predomi-
nant allele in the sample at that marker may be chosen
for the representative haplotype. Determination of an
upper bound is more involved and will be described
elsewhere. As part of the determination of the upper
bound, we maximize the likelihood for each current k-
marker haplotype.

Consider estimation of t�1. If the set of markers spans
an extremely long distance, then, at some point, there
will be no more sharing of an ancestral haplotype; how-
ever, an estimated ancestral haplotype containing mark-
ers from one of the haplotypes in the data will always
exhibit some sharing. Thus, if reconstruction of the an-
cestral haplotype continues too far away from the var-
iant, upward bias in the estimated t�1 will be introduced.
To guard against this, we do not reconstruct the ancestral
haplotype beyond the markers at which the expected
number of haplotypes still sharing the ancestral haplo-
type, conditional on the data and the parameter esti-
mates, drops to either !5 or !25% of the sample size,
whichever is larger. When the likelihood is maximized
for each k-marker haplotype, the Baum algorithm au-
tomatically provides the conditional expected number of
individuals still sharing at the ends of the haplotype. If
this drops to either !5 or !25% of the sample size,
reconstruction is terminated. On the other hand, for the
multilocus mapping problem, it is necessary to include
the same data in the likelihood for each possible loca-
tion, and, in that case, we are generally not concerned
with bias in the estimation of t�1. Thus, in the mapping
problem, we do not impose any threshold for stopping
the reconstruction of the ancestral haplotype.

Appendix C

Joint Distribution of Breakpoints of Ancestral Segments
of Two Related Haplotypes

Under the assumption of no interference, right and
left breakpoints are independent, so consider only the
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right breakpoints. The two haplotypes are assumed to
be descended from the most recent common ancestor of
the sample, with the most recent common ancestor of
the pair occurring at time tt generations after the most
recent common ancestor of the sample. Thus, at time tt

generations after the most recent common ancestor of
the sample, the two haplotypes have the same right
breakpoint Bt, which is exponential(tt) distributed. After
that point, their recombinational histories are assumed
to be independent for time ta. During that time, let B1

be the location of the nearest crossover, to the right of
the variant, occurring on haplotype 1, and let B2 be the
location of the nearest crossover, to the right of the var-
iant, occurring on haplotype 2. B1 and B2 are indepen-
dent exponential(ta). The resulting right breakpoint for
haplotype 1 is , and the resulting rightR = min (B ,B )1 1 t

breakpoint for haplotype 2 is R2 = min(B2,Bt). We use
the following three properties of the exponential distri-
bution: (a) If Xi is exponential(ai), with the Xi’s inde-
pendent, , then for ai = 1,...,n P{X ! X for all i ( j}j i

given j in 1,),n is aj/Siai. (b) Conditional on the event
for a given j in 1,),n, the distri-{X ! X for all i ( j}j i

bution of Xj is exponential(Siai). (c) Conditional on
, Xi has the distribution of an exponential(ai){X 1 x}i

random variable plus x. Applying the properties, we
find that P{R = R } = P{B � B and B � B } = t /(t �1 2 t 1 t 2 t t

. Conditional on the event ,2t ) {B � B and B � B }a t 1 t 2

the distribution of Bt is exponential . With prob-(t � 2t )t a

ability , the right breakpoints of the two2t /(t � 2t )a t a

haplotypes will be distinct (i.e., the event {B 1t

will occur). Conditional on this event, theB or B 1 B }1 t 2

distribution of min(R1,R2) is exponential , and(t � 2t )t a

, where E is exponen-max (R ,R ) = min (R ,R ) � E1 2 1 2

tial(t) independent of min(R1,R2).

Appendix D

Correlation between Ancestral-Segment Lengths, for
Haplotypes Related by a Conditional-Coalescent Model

First, we give the density of the jth coalescent time,
conditional on time a to the most recent common an-
cestor, where j is counted by proceeding backward in
time. Here, all times are on the coalescent scale of 2Ne

generations, where Ne is generally taken to be 104; thus,
. The conditional density of the jth coa-�5a = 5 # 10 t

lescent time is

n�1n�1

�1 �s(i�1)i/2f (s) = (�1) � [(i � 1)i/2 � (k � 1)k/2] e�j
k=n�ji=n�j
k(i

n�j�1n�j�1

�1 (a�s)(h�1)h/2# � [(h � 1)h/2 � (l � 1)l/2] e�
l=1h=1
l(h

n�1n�1
′ ′′ ′ ′ ′ �1 �a(i �1)i /2� � [(i � 1)i /2 � (j � 1)j /2] e ,�

′′ j =1i =1
′ ′j (i

where n is the sample size. Then the correlation between
ancestral-segment lengths for a randomly chosen pair of
haplotypes from a coalescent model with sample size n,
conditional on time a to the most recent common an-
cestor can be computed as

a

n�1 2(n � 1) a � s
f (s) ds .� � j(n � 1)(n � j � 1)(n � j � 2) a � sj=1

0

When a approaches 0, we obtain correlation

n�2

2(n � 2)!(n � 1)�{k=1

�[(n � 1)(n � k � 1)(n � k � 2)

#(n � k)(k � 1)!(n � k � 2)!]

�1
�

n�i�1i# (�1) .� ( ) }n�ki=1

This approximation is useful when t is small relative to
.42 # 10
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